THERMOELASTICITY MODELS TAKING ACCOUNT
OF A FINITE HEAT PROPAGATION RATE
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Ananalysis is made of the stationary wave process in a one-dimensional thermoelastic medium on
the basis of two heat-conduction models. The nature of the change in the phase velocities, the
damping coefficients, the coefficientof connectedness, and the phase-shift angle are established.

Twoapproaches are known inthermoelasticity theory, which resultin a finite rate of heat propagation.
Extensively used inone isa modified Fourier law which takes account of the heat flux relaxation [1-3], while
the governing equations in the other are derived directly from the generalized inequalities of entropy produc-
tion [4, 5]. Such a generalization notonly results in a finite heat-propagation rate butalso contains a symmetric
heat-conduction tensor to linear theory accuracy [6]. We later call such models the Green — Laws models [5].

Substantially, these approaches describe differentaspects of a complex process. The first approach
results in a process with a quite definite relaxation, similar to the Maxwell model in the theory of viscoelasticity,
and the second model is analogous to the Voigt model inthe theory of viscoelasticity with elements of creep. It
is clear that a more generalmodel of thermoelasticity should contain both physical phenomena.

One-dimensional wave propagation to the accuracy of both models is studied in this paper. Byassuming
that the heat-conduction equations for the unconnected problem agree to the accuracy of both models inform,
we obtain a single characteristic equation. Inthe case of the Green — Laws model, the coefficients of this equa-
tion contain two parameters mx and nx, which characterize the relaxation processand the rate of temperature
change. In the case of using the modified Fourier law ms =ns.

The characteristic equation is solved numerically for waves with fixed frequency andlength. Asymptotic
formulas are also obtained to determine the phase velocities and damping coefficients. The nature of the wave
is analyzed for different values of the reduced frequencies or lengths under the assumption that the phase veloc-
ities and damping coefficientsare smooth functions of their arguments. A wave for which the asymptotic for-
mulas of the phase velocity govern the velocity of the purely elastic wave in the case of theunconnected prob-
lem is hence called a modified elastic wave. Another type of wave is correspondingly called a modified ther-
mal wave. It isshown that, depending onthe properties of the medium, the velocity of a definite wave can alter
the asymptotic behavior for different values of the reduced frequencies. This is the distinction from the defini-
tions takenin [7].

1. Fundamental Equations

Inthe one-dimensional case in the absence of volume forces and point sources, the modified Fourier law
results in the system of equations {8]
. C%u”’.'x,po_l el =u..’
TG0 - 07— kg (po6e) ™ 0" 1 T (056.) ™ (Tt '+ 1) = 0,
e=0A+2p7", x=0Cr+2Wa,, 0=T—T,
Here differentiation with respect tothe Lagrange coordinate x is denoted by a prime and with respect to the
time t by a point.

(1.1)

Moreover, the classical Clausius — Duhem Inequality results in a finite heat-propagation veloecity only
under additionalhypotheses butnot inthe case of a theory linearizedrelative to the temperature [9, 10]. Hence,
the generalized inequality
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Fig. 1. Dependences of the phase velocities ¢{ =c x(Ret 07! on
the dimensionless frequency y =w w;‘ aje =0: I) nx =0, II) nx =
0.5, ID nx=0.9; e=1.14+107% 1) nx =0, M+ =5.0; 2) nx =0,

mx* =20.0; 3) nx =0.5, m4x =5.0; 4) nx=0.5, my =20.0; 5) nx=0.9,
mx =5.0; 6) nx =0.9, Mmy=20.0; b) e =0: Dnx=0; €=0.432, nx=0:
1) mx =0; 2) mx =0.5; 3) mx=1.0; 4) m«=2.0; 5) my, =5.0. The
primed numbers are curves corresponding to the phase velocity
Cy.
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— \ pSdV —{ ——dV = |\ =L dF>0 (1.2)

a )P f @ f ) =
Vv

v
is proposed in [5], which holds forevery volume V bounded by the closed surface F of a body, wheren; is the
external normalto the surface F and & isa scalar function. If the function & isgiven as an equation of state,
then the heat-conduction law is a corollary of inequality (1.2). Inthe case of static processes #=T. The
Green — Laws model, obtained on the basis of (1.2), reduces to the system of equations
c%u”—upg‘(@’%-aﬂ VY=u", 1.3)
@ A+ 0 — kg (0oC,) THO” 4 uTo(pec)  u = 0.

In contrastto (1.1), new parameters « and ayare contained in (1.3), which arerelated by the inequality
o =w =0 resulting from (1.2).

Let us make the assumption that the equations of motionand of heat conduction resulting from (1.1) and
{1.3) should agree for the unconnected problem (n=0). Then 7= ¢.

Let us examine plane wave propagation

u=udexpi(nx —ot)], 6=~06"expli(nx— o). (1.4)
Taking account of (1.4), we obtain a characteristic equation [8] from the system of equations (1.1):
(2 — X2) (X — in,¥2 + i) + B (1 — inX) = O,
L= ooy, E=cmey’, = copc ko (1.5)
Ry == Ty, €= ¥2Tcg? pr2et.
Analogously, we obtain from system (1.3)
(2 — %) (X — in, X2 + €2 + eB (1 — im,X) = 0, (1.8)
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Fig. 2. Dependence of the damping coefficients q; =qyIm¢;, gy =w«cj! on the dimension-
less frequency y cwws 1 e=0: Dne=0;e=1.14+10"2: 1) nx =0, mx=0; 2) nx =0, mMx =
0.5; 3) nx =0, My =5,0; 4) nx =0, mx =20.0; 5) n+=0.5, m*=0.5; 6)ny =0.5, mx =5.0;
7) nx =0.5, mx =20.0. The primed numbers are curves corresponding to the damping
coefficient q,.

Fig. 3. Dependence of the coefficient B on the dimensionless wavelength ¢ =cgnwz!:
e=1.14.107%: 1) nx =0.01, m# =0.01;2) n4=0.01, m, =5.0; 3)nx =0.01, m4 =10.0;
4)nx =0.5, Mmx=0.5; 5) nx=0.5, mx=1,0; 6) nx=0.5, my =5.0; 7) nx=0.5, Mx=
10.0. The dashed line I corresponds toa change of the coefficient A from [8].

where mx = qw, and the inequality m+=n, =0 is satisfied. Equations (1.5) and (1.6)agree whenms+ =nx. Then
the phase velocities for both models [c; =c0x(Regi)'1] and the appropriate damping coefficients [q; =qIm £, qp=
w*c(','i (i=2, 3, 4)] of waves with a fixed frequencyare alsoequal.

We obtain from (1.1) for waves with a fixed frequency [8]

i = W exp[— o, gt + o4cy (r— FE el
0 = utnTycolis | Aexp[— o, gt + okce (x—FE cf) + 1+l 1.m
where y =+f — ig is one of the two pairs of roots of (1.5) and the coefficients A and y are determined from the

relations
1
I

l —_—
A=t} + 53) 2 L2sh + (s, — B

- 1.
tgy = [(72 + g9 s, — B, — 1l (f2 =+ g1 (FEs)) ™", (1.8)
5y =g+ n (FP— g2, sy=1-—2n.4g.
We have for system (1.3) from (1.6)
u=ulexpl—o.lt+ ok (x — K e,
(1.9)

0 — udnT coks Bexpl— ot + 0kc0 ' (x — RE™ o) -+ 7t = 8],

where x =+h — il is one of the two pairs of roots of (1.6) and the coefficients Band § are determined from the
relations |
1 —_— —
B=t(+ 1) i+, —87
tgd = [L(py —E8) + hpy) a(lp,--E—pI™"

pi=1+4n,(n2—19), py=1—2nl

(1.10)
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Fig. 4. Dependence of the shift angle

§ (rad) on the dimensionless wavelength
t=cwy; e=1.14+107%: 1) n, =0.01,
Mg =0.5(5.0; 10.0); 2) nx=0.5, mx =
0.5, 3) n¥=0.5, m%=5.0; 4) nx=0.5,
mx=10.0. The dashed line I corre-
sponds to a change in the shift angle

v from [8].

If my =n«, then h={, =g, p;=si(i=1, 2), but the amplitudes of the displacement and the temperature ¢
are not equalto the accuracy ofthe models (1.1) and(1.3), andthe phase shifts vy and § are also notequal. For
example, inparticular,for m« =nx =0

(AIB)? = 1 + n, [nu (2 -+ g%) — 2°(g -+ 20/ (P -+ g9 7")- (1.11)

2. Asymptotic Formulas for Waves with a Fixed Frequency

Let the roots of Eq. (1.8) fore =0 be denotedas follows:
1

8=y Ba= = (na+in?, (2.1)
where [m§g> 0 has been chosen. Then for x <1 we obtain from (2.1)
¢ =cpn q=0, 2.2)
L 2 1 N\T T
G=a@)® +007) g=a(5¥)7 00T (23

An elastic wave hence corresponds tothe root ¢) anda thermal wave to £ 3

For e> 0 we denote by &, that root of (1.6) which has the asymptotic form (2.2) for y «1 and e —0, and by
£, that rootwhich has the asymptotic form (2.3) under the same conditions. Then the wave corresponding to
the root ¢; will behave as an elastic wave for x «1, while the wave corresponding to the root £, will behave as
a thermal wave. Let us consider £; (i =1, 2) continuous and differentiable functions of y. Under these hypotheses
for e # 0 and »w <1 we obtain the following asymptotic formulas:

L
a=c(l+e° + 0, (2.4
5
g = _;.. gl +¢) 211+ (m, —ny) (1 -+ )] 1>+ 01,
1 3

6 =col2x(1 +e) % +0(7), (2.5)
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1 3
‘Iz=‘70[—;—7((1 +e)] 2o
For x>1 and ny =0

1

Cpr= coa‘;? 40Xy,

1 -1 - (2.6)
e = 5 Qb2 01'22 + 0™,
1
1 —
A2 = ) {1 +n,+ em, = [(1 + n,+ em,)> — 4n,] : 3
- _;_ (2.7)
bie = F[(1 +e)ar,2— 11 {(1 + n, + em,)* —4n,]
Here cg and qy denote the asymptotic phase velocityand damping coefficient of the modified elastic wave
which correspond as e — 0 to the root ¢!, while epand qT are the same quantities corresponding to the root £J
under the same assumptions. I

C=Cp Gy = (g, C=0Cp §y={(y (2.8)

is satisfied, thenthe wave with phase velocity ¢; is elastic for both y «1 and y>1, The corresponding wave
with phase velocity c, is thermal in nature in the whole domain.

If

¢, =Cp Q4=0Gp C3=Cg G=qp (2.9)
thena wave with phase velocity ¢, is elastic for y«1 and thermal for y>1. On the other hand, the wave with
phase velocity ¢, isthermal for y «1 and elastic for x >1. Which of the cases (2.8) or (2.9) isactually realized
is determined by the properties of the medium. This will be discussed below (Sec. 3). Let us note

that the particular case n« = 0, x >1 will result in the formulas

c=co (1 +em,) 2 +0(X™, (2.10)
Gy = %qo[(l +o(l+em)—11(1+ m) T4 o™,
er=col2(1 + em,) 0¥ 400 ™), (2.11)
=0 KT em)i” T o )

3. Analysis of the Results

Results of caloulating the roots of (1.6) with anappropriate passage over to physical quantities are shown
in Figs. 1-4. The calculations were performed by using the connectedness coefficient e of steel (e=1.14 - 1072)
and of polyvinyl butyral (e =0.432)[11]. The actual numerical values of the parametersns and m« are not
known because the physical quantities governing these parameters have either not been determined with suffi-
cient accuracy (the relaxation time of the heat fluxr,), or have generally not been determined (the relaxation
time o). Hence, the calculations have been performed inthis paper with several numerical values of r; and
a in order to estimate the possible effects caused by these physical parameters.

Let us examine the behavior of fixed-frequency waves. Graphs of the phase velocities c;are represented
in Figs. la and b for e=1.14-107% and e =0.432, respectively. The basic distinctions between the curves
obtained, as comparedwith the curves correspondingto the case of the parabolic heat-conduction equation {7],
occur in the frequency range commensurate with the characteristic frequency wyx or higher. It isunderstood
that we obtain the case of the parabolic heat-conduction equation [7] considered by Chadwick, for mx = nx =0,
The situation changes for my4=n4>0. Depending on the value of the connectedness coefficient e and the param-
eters my and nx, either condition (2.8) or (2.9) can be satisfied. In general, condition (2.8)is always con-
served for smalle and n«; i.e., the nature of the wave does not change. For large ns condition (2.9) is satis-
fied. It is seen in Fig. 1a (e =1.14 - 1072) that condition (2.8) is satisfied for n« =0 and n« =0.5, and condition
(2.9)for nyx=0.9. As in Fig. 1b (e =0.432), for large connectedness coefficients e condition (2.8) is satisfied
only for small values of m, (0.0 and 0.5). Condition (2.9) is satisfied for values of mx=1.0. Asa rule, an
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abrupt change occurs in the range 0.1=<x%1.0. The physicalmeaning of this phenomenon is that upon com-
pliance with (2.9), that wave which is elastic for x <1 isalways the fast wave, while thatwhich isthermal in
nature for y «1 is slow, but both cases can be observed upon compliance with (2.8). In principle, this agrees
withthe Aschenbachresults [12].

The damping coefficients q; corresponding to the phase velocities in Fig. 1a are represented inFig. 2
for different values of m, and ny. Characteristic here is the fact that the fundamental qualitative measurements
occur, compared to the parabolic equation case [7], in the frequency range x>1.0, i.e., above the characteris-
tic frequency.

The connectedness coefficient B and the phase-shiftangle § are characteristic for fixed-frequency waves.
The roots of (1.8) to determine B and of (1.10) todetermine § correspond to a modified elastic wave as in[7]
(Pigs. 3 and 4, respectively). Asin [8], the main distinction from classical theory [7] is observed for £ ~1.0.
The change turns out to be not very substantial for the phase-shiftangle (Fig. 4). The dashed lines I in Figs. 3
and 4 show the curves for changes in these quantities determined by means of model (1.1) [8]. As has been shown
abhove, they differ substantially from the curves obtained by means of model (1.3).

Therefore, taking accountof the rate of temperature change in the equations of state to the accuracy of
model (1.3) is, justas taking account of heat-flux relaxation, necessary athigh frequencies (on the order of the
characteristic frequencies) or for smallwavelengths. The dependences obtained canbe used to check experi-
mentally determined relaxation parameters.

NOTATION

u(x, t), displacement; T, T, linear andinitial temperature; A, p, Lamé constants; p, py, linear and
initial densities of the medium; a7, coefficient of thermalexpansion; 7, relaxation time of the heat flux; Ky,
heat-conduction coefficient; ce, specific heat per unit mass; S, specific entropy; r, specific heat source inten-
sity; qi, heat flux components; u’, 6°, plane wave amplitudes; 7, wavelength; w, wave frequency.
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